CANbridge-UMass Chan Medical School Gene Therapy Research in Oral Presentation at the European Society of Gene and Cell Therapy (ESGCT) 29th Annual Congress

0
200

BEIJING & BURLINGTON, Mass.– CANbridge Pharmaceuticals Inc. (HKEX:1228), a leading global biopharmaceutical company, with a foundation in China, committed to the research, development and commercialization of transformative rare disease and rare oncology therapies, announced that data from its gene therapy research agreement with the Horae Gene Therapy Center, at the UMass Chan Medical School, was presented at the 29th European Society of Gene and Cell Therapy Annual Congress in Edinburgh, Scotland, today.

In an oral presentation, Guangping Gao, Ph.D., Co-Director, Li Weibo Institute for Rare Diseases Research, Director, the Horae Gene Therapy Center and Viral Vector Core, Professor of Microbiology and Physiological Systems and Penelope Booth Rockwell Professor in Biomedical Research at UMass Chan Medical School, discussed the study that was led by the investigator Jun Xie, Ph.D., and his team from Dr. Gao’s lab, and titled “Endogenous human SMN1 promoter-driven gene replacement improves the efficacy and safety of AAV9-mediated gene therapy for spinal muscular atrophy (SMA) in mice”.

The study showed that a novel second-generation self-complementary AAV9 gene therapy, expressing a codon-optimized human SMN1 gene. under the control of its endogenous promoter, (scAAV9-SMN1p-co-hSMN1), demonstrated superior safety, potency, and efficacy across several endpoints in an SMA mouse model, when compared to the benchmark vector, scAAV9-CMVen/CB-hSMN1, which is similar to the vector used in the gene therapy approved by the US Food and Drug Administration for the treatment of SMA. The benchmark vector expresses a human SMN1 transgene under a cytomegalovirus enhancer/chicken β-actin promoter for ubiquitous expression in all cell types, whereas the second-generation vector utilizes the endogenous SMN1 promoter to control gene expression in different tissues.  Compared to the benchmark vector, the second-generation vector resulted in a longer lifespan, better restoration of muscle function, and more complete neuromuscular junction innervation, without the liver toxicity seen with the benchmark vector.

This, the first data to be presented from the gene therapy research collaboration between CANbridge and the Gao Lab at the Horae Gene Therapy Center, was also presented at the American Society for Cellular and Gene Therapy (ASGCT) Annual Meeting in May 2022. Dr. Gao is a former ASCGT president.